NoHype: Virtualized Cloud Infrastructure without the Virtualization

Eric Keller, Jakub Szefer, Jennifer Rexford, Ruby Lee

Princeton University

ISCA 2010
Virtualized Cloud Infrastructure

• Run virtual machines on a hosted infrastructure

• Benefits...
 – Economies of scale
 – Dynamically scale (pay for what you use)
Without the Virtualization

• Virtualization used to share servers
 – Software layer running under each virtual machine
Without the Virtualization

- Virtualization used to share servers
 - Software layer running under each virtual machine

- Malicious software can run on the same server
 - Attack hypervisor
 - Access/Obstruct other VMs
Are these vulnerabilities imagined?

• No headlines… doesn’t mean it’s not real
 – Not enticing enough to hackers yet?
 (small market size, lack of confidential data)

• Virtualization layer huge and growing
 – 100 Thousand lines of code in hypervisor
 – 1 Million lines in privileged virtual machine

• Derived from existing operating systems
 – Which have security holes
NoHype

- NoHype removes the hypervisor
 - There’s nothing to attack
 - Complete systems solution
 - Still retains the needs of a virtualized cloud infrastructure

No hypervisor
Virtualization in the Cloud

• Why does a cloud infrastructure use virtualization?
 – To support dynamically starting/stopping VMs
 – To allow servers to be shared (multi-tenancy)

• Do not need full power of modern hypervisors
 – Emulating diverse (potentially older) hardware
 – Maximizing server consolidation
Roles of the Hypervisor

- **Isolating/Emulating resources**
 - **CPU**: Scheduling virtual machines
 - **Memory**: Managing memory
 - **I/O**: Emulating I/O devices

- **Networking**

- **Managing virtual machines**
Roles of the Hypervisor

• Isolating/Emulating resources
 – CPU: Scheduling virtual machines
 – Memory: Managing memory
 – I/O: Emulating I/O devices

• Networking

• Managing virtual machines

Push to HW / Pre-allocation
Roles of the Hypervisor

• Isolating/Emulating resources
 – CPU: Scheduling virtual machines
 – Memory: Managing memory
 – I/O: Emulating I/O devices

• Networking

• Managing virtual machines

Push to HW / Pre-allocation

Remove
Roles of the Hypervisor

• Isolating/Emulating resources
 – CPU: Scheduling virtual machines
 – Memory: Managing memory
 – I/O: Emulating I/O devices

• Networking

• Managing virtual machines
Roles of the Hypervisor

- **Isolating/Emulating resources**
 - **CPU:** Scheduling virtual machines
 - **Memory:** Managing memory
 - **I/O:** Emulating I/O devices

- **Networking**

- **Managing virtual machines**

NoHype has a double meaning… “no hype”
Scheduling Virtual Machines

- Scheduler called each time hypervisor runs (periodically, I/O events, etc.)
 - Chooses what to run next on given core
 - Balances load across cores
Dedicate a core to a single VM

- **Ride the multi-core trend**
 - 1 core on 128-core device is ~0.8% of the processor

- **Cloud computing is pay-per-use**
 - During high demand, spawn more VMs
 - During low demand, kill some VMs
 - Customer maximizing each VMs work, which minimizes opportunity for over-subscription
Managing Memory

- **Goal**: system-wide optimal usage
 - i.e., maximize server consolidation

- Hypervisor controls allocation of physical memory
Pre-allocate Memory

• In cloud computing: charged per unit
 – e.g., VM with 2GB memory

• Pre-allocate a fixed amount of memory
 – Memory is fixed and guaranteed
 – Guest VM manages its own physical memory
 (deciding what pages to swap to disk)

• Processor support for enforcing:
 – allocation and bus utilization
Emulate I/O Devices

- Guest sees virtual devices
 - Access to a device’s memory range traps to hypervisor
 - Hypervisor handles interrupts
 - Privileged VM emulates devices and performs I/O
Emulate I/O Devices

- Guest sees virtual devices
 - Access to a device’s memory range traps to hypervisor
 - Hypervisor handles interrupts
 - Privileged VM emulates devices and performs I/O
Dedicate Devices to a VM

- In cloud computing, only networking and storage
- Static memory partitioning for enforcing access
 - Processor (for to device), IOMMU (for from device)
Virtualize the Devices

- Per-VM physical device doesn’t scale
- Multiple queues on device
 - Multiple memory ranges mapping to different queues
Networking

- Ethernet switches connect servers
Networking (in virtualized server)

- Software Ethernet switches connect VMs
Networking (in virtualized server)

- Software Ethernet switches connect VMs

Today
Networking (in virtualized server)

• Software Ethernet switches connect VMs
Do Networking in the Network

- Co-located VMs communicate through software
 - Performance penalty for not co-located VMs
 - Special case in cloud computing
 - Artifact of going through hypervisor anyway

- Instead: utilize hardware switches in the network
 - Modification to support hairpin turnaround
Managing Virtual Machines

• Allowing a customer to start and stop VMs
Managing Virtual Machines

• Allowing a customer to start and stop VMs

Cloud Customer

Wide Area Network

Cloud Manager

VM images

Request: Start VM

Cloud Provider

Servers

Request: Start VM
Hypervisor’s Role in Management

• Run as application in privileged VM

Today
Hypervisor’s Role in Management

- Receive request from cloud manager
Hypervisor’s Role in Management

- Form request to hypervisor
Hypervisor’s Role in Management

- Launch VM
Decouple Management And Operation

- System manager runs on its own core
Decouple Management And Operation

• System manager runs on its own core
• Sends an IPI to start/stop a VM
Decouple Management And Operation

- System manager runs on its own core
- Sends an IPI to start/stop a VM
- Core manager sets up core, launches VM
 - Not run again until VM is killed
Removing the Hypervisor Summary

• Scheduling virtual machines
 – One VM per core

• Managing memory
 – Pre-allocate memory with processor support

• Emulating I/O devices
 – Direct access to virtualized devices

• Networking
 – Utilize hardware Ethernet switches

• Managing virtual machines
 – Decouple the management from operation
Security Benefits

- Confidentiality/Integrity of data
- Availability
- Side channels
Security Benefits

• Confidentiality/Integrity of data
 • Availability
 • Side channels
Confidentiality/Integrity of Data

Requires access to the data

<table>
<thead>
<tr>
<th>With hypervisor</th>
<th>NoHype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers upon VM exit</td>
<td>No scheduling</td>
</tr>
<tr>
<td>Packets sent through software switch</td>
<td>No software switch</td>
</tr>
<tr>
<td>Memory accessible by hypervisor</td>
<td>No hypervisor</td>
</tr>
</tbody>
</table>

- System manager can alter memory access rules
 - But, guest VMs do not interact with the system manager
NoHype Double Meaning

• Means no hypervisor, also means “no hype”

• Multi-core processors
 – Available now

• Extended (Nested) Page Tables
 – Available now

• SR-IOV and Directed I/O (VT-d)
 – Network cards now, Storage devices near future

• Virtual Ethernet Port Aggregator (VEPA)
 – Next-generation switches
Conclusions and Future Work

• Trend towards hosted and shared infrastructures
• Significant security issue threatens adoption
• NoHype solves this by removing the hypervisor
• Performance improvement is a side benefit

• Future work:
 – Implement on current hardware
 – Assess needs for future processors
Questions?

Contact info:

ekeller@princeton.edu

http://www.princeton.edu/~ekeller

szefer@princeton.edu

http://www.princeton.edu/~szefer